

15

- Adherence to Standard, Contact, and Airborne Precautions, Including the Use of Eye Protection
- Image Visitor Access and Movement Within the Facility
- Implement Engineering Controls
- Monitor and Manage III and Exposed Healthcare Personnel
- D Train and Educate Healthcare Personnel
- Implement Environmental Infection Control

"Routine cleaning and disinfection procedures (e.g., using cleaners and water to pre-clean surfaces prior to applying an EPA-registered, hospitalgrade disinfectant to frequently touched surfaces or objects for appropriate contact times as indicated on the product's label) are appropriate for 2019-nCoV in healthcare settings" CDC. Interim Infection Prevention and Control Recommendations (2/12/2020)

Group	Gram-positive bacteria	Gram-negative bacteria	Mycobacteria	Fungi	Viruses	Speed of action	Comments
Alcohols	+++	+++	+++	+++	***	Fast	Optimum concentration 60%- 95%; no persistent activity
Chlorhexidine (2% and 4% aqueous)	+++	**	+	+	***	Intermediate	Persistent activity; rare allergic reactions
lodine compounds	+++	***	***	++	***	Intermediate	Causes skin burns; usually too irritating for hand hygiene
lodophors	+++	+++	+	++	++	Intermediate	Less initating than iodine; acceptance varies
Phenol derivatives	+++	+	+	+	+	Intermediate	Activity neutralized by nonionic surfactants
Tricolsan	+++	++	+	-	+++	Intermediate	Acceptability on hands varies
Quaternary ammonium compounds	+	**	-	-	+	Slow	Used only in combination with alcohols; ecologic concerns

32

33

HEPLISAV-B

- ▶ FDA licensed 11/9/2017
- ▶ Protection against all HBV subtypes in persons \ge 18 yrs old
- ► Vaccine series: 2 doses, separated by 1 month
- Uses 018 adjuvant to stimulate directed response to HBsAg
- Clinical studies demonstrated high rates of seroprotection:
 - ♥ 90.0%-100.0% HEPLISAV-B recipients vs. 70.5%-90.2% recipients comparison group
 - Type 2 diabetes mellitus: 90.0% (HEPLISAV-B) vs. 65.1% (comparator)

Halperin. et al. Vaccine (2012); Janssen et al. Vaccine 2013; HEPLISAV-B package insert 11/2017

Representative Occupational Respiratory Infections						
DISEASE	CAUSATIVE AGENT	TRANSMISSION				
Tuberculosis	Myocobacterium tuberculosis	Droplet nuclei expelled by patient from coughing				
Common cold	Rhinoviruses, Adenoviruses (most frequently)	Coughing and sneezing; contaminated environmental surfaces				
Influenza	Influenza viruses	Spatter and aerosols associated with coughing; contaminated environmental surfaces				
Severe Acute Respiratory Syndrome	SARS Coronavirus	Close person-to-person contact via aerosolized droplets and indirect contact from contaminated surfaces				
Pertussis (whooping cough)	Bordetella pertussis	Coughing and sneezing				
Legionnaires' Disease	Legionella pneumophila	Breathing in mist or vapor (small droplets of water in the air) containing the bacteria; not spread from person-to-person				
Rubeola (measles)	Rubeola virus	Droplets from airborne secretions of infectious persons				

 Automated Instrument Cleaning

 effective
 efficiency

 efficiency

 e efficiency

 e efficiency

 e efficiency

 e exposure to blood
 & body fluids

 e exposure to sharps

 dish washers
 are NOT
 instrument washers !

 When ultrasonic is utilized, is periodic testing performed?

 Image: state state

64

Are Clinical Contact Surfaces Covered or Cleaned & Disinfected Between Patients?

68

Microbial Persistence on Dry Inanimate Surfaces					
Microorganism	Duration of Persistence				
Staphylococcus aureus, incl. MRSA	7 days – 7 months				
Mycobacterium tuberculosis	2 days – 4 months				
Development Bordetella pertussis	3 – 5 davs				
Enterococcus sp. (incl. VRE)	5 days – 4 months				
Clostridium difficile spores	up to 2 yrs.				
Escherichia coli	1.5 hrs. – 16 months				
Candida auris	>1 month				
Influenza viruses	1 – 2 days				
Rhinoviruses	2 hrs – 7 days				
Herpes simplex viruses (HSV)	4 hrs. – 8 wks.				
Hepatitis B Virus (HBV)	> 1 wk. (in blood)				
Hepatitis C Virus (HCV)	16 hrs. – 6 wks. (in blood)				
Hepatitis A Virus (HAV)	2 hrs. – 2 months				
Human Immunodeficiency Virus (HIV)) few min. – 7 days**				
	/				

69

Properties of an IDEAL Surface Disinfectant

- -- broad antimicrobial spectrum
- -- rapid, lethal action on all vegetative forms
- not affected by physical factors (i.e. active in presence of organic matter)
- -- non-toxic; non-allergenic; easy to use
- -- surface compatibility: should not compromise integrity of equipment & metallic surfaces
- -- residual effect on treated surfaces (reactivation of agent when moistened)
- odorless

72

 eco-friendly (does not add "damaging" chemicals to environment)

Does the dental unit water meet EPA regulatory standards for drinking water?

Use water that meets regulatory standards for drinking water (< 500 CFU/ml of heterotrophic water bacteria) for routine dental treatment output water. CDC (2003)

75

Rapid Growth of Microbes in DUWL Biofilm caused by:

- Small diameters of waterlines
- System design: dead legs; control blocks
- Tubing materials conducive to biofilm growth

 Surface-to-volume ratio: smaller cylinder diameter; larger the surface area available for colonization by same volume of water

- Slow water flow --very little flow at hydrodynamic boundary
- Low volume of water used
- Water warms to room temp.
- Low usage

80

81

82

Representative Isolated DUWL Microbes

photos permission of Hu-Friedy & J. Chandler (2018)

Year	Infection Etiology	Contaminated Water Source	Outcome/Impact
2010	Legionella pneumophila	Hospital decorative water fountain	Legionnaires' disease
2011	Klebsiella oxytoca	Hospital handwashing sink	Pneumonia; abdominal abscess
2011	Legionella pneumophila ¹	Handpiece waterlines in a dental practice	Legionnaires' disease
2012	Pseudomonas fluorescens	Drinking water in bone marrow transplant unit	Febrile nosocomial infection with neutropenia
2014	Legionella pneumophila	City water system	Legionnaires' disease
2014	Mycobacterium chimera	Surgical heater-cooler units in surgical operating rooms	Endocarditis; blood stream infection
2015	Legionella pneumophila	Cooling towers on commercial building	Legionnaires' disease
2015	Mycobacterium abscessus ²	Tap water used to perform pulpotomies	Odontogenic infection
2016	Mycobacterium abscessus 3	Tap water used to perform pulpotomies	Odontogenic infection
2017	Pseudomonas aeruginosa	Electronic tap water faucets in neonatal units	Bacteremia
2017	Legionella pneumophila ⁴	Dental waterlines	Legionnaires' disease
2018	Legionella pneumophila	Hotel hot tub and other non-maintained water sources	Legionnaires' disease

86

Pseudomonas Case Report in Dentistry

Ps. aeruginosa wound infections

- Gingival infections in 2 immune compromised pts after restorative treatment
- Ps. aeruginosa in DUWL matched to bacteria cultured from pt wounds
- De Pts treated for infection w/o any sequelae
- Also found carriage of *Ps. aeruginosa* detected in 78 other asymptomatic pts

Martin. Brit Dent J (1987)

87

88

Complete DUWL systems include use of antimicrobial cleaner + maintenance product

CLEANING with registered antimicrobial KEY to removing microbial deposits; also termed "shock" chemical - does not come into contact with mucosal tissues

MAINTENANCE product prevents waterborne organisms from attaching, colonizing, proliferating in tubing - can come in contact with mucosal tissues

92

93

- Follow manufacturer's IFUs for daily/weekly maintenance
- Do not use waterline heaters
- When recommended, shock waterlines c strong chemical
- \blacksquare Remove handpieces, A/W tips, ultrasonic scalers before flushing
- Flushing at beginning/end of day for at least 2-3 minutes
- Handpieces flushed 20-30 seconds after patient care
- Sterile water/saline when irrigating open surgical sites and when cutting bone during surgical procedures
- Test waterlines consistently to confirm maintenance protocol effectiveness and determine proper shock frequency

94

CA Dental Legislation AB1277

- Requires <u>Dental Board of California (DBC)</u> to revise minimum standards for infection control "to require water or other methods used for irrigation to be sterile or contain recognized disinfecting or antibacterial properties when performing dental procedures that expose dental pulp"
- California (1st state) now requires DUWL testing
- Others developing similar rules (i.e. Washington)

- OSAP 2018: recommends periodic monitoring & inspection at leastmonthly following installation of treatment devices, or initiation of new protocols
- When monitoring shows acceptable counts for 2 consecutive monthly cycles, frequency of testing may be reduced, but not less than every 3 months
- When a dental unit exceeds the action limit, treat according to manufacturer IFU, and re-tested immediately after tx
- Periodic, consistent monitoring key to improving water quality

Dental Unit Water Quality: Organization for Safety, Asepsis and Prevention (OSAP) White Paper and Recommendations–2018); Mills. OSAP Boot Camp (1/20/2020)

Thank You

QUESTIONS ??

QUESTIONS ??

QUESTIONS ??

QUESTIONS ??